

Korea.....

Geo-political feature....

- A small, divided country bordering with China and Russia in the north and surrounded by the Japanese islands in the south.
- Highly dependent on neighboring countries for national security
 - Major historical changes on the Korean peninsula political, social, and cultural - have been the results of rivalry and/or cooperation among the neighboring powers.

Geo-economic features....

- A country with a small land app 220 square Km or 99 square Km, if excluding the northern part of the peninsula, of which ¾ is non-arable mountains
- Very poor in natural resources no oil reserve, insignificant reserves of coal and other resources
- Very limited economic interactions with western powers due to geographical remoteness – retarded in industrialization
- But it has to support a large population 80 million people

• Korea.....

3

Cultural inheritance....

- A very uni-cultural society strongly influenced by Confucian tradition
 - ⇒placing highest value on scholarship and education
 ⇒social order based on vertical relationships respect for seniors and the elderly
- Very closely knitted society, where family, school, religious and regional backgrounds are very important determinants of inter-personal relationships
- Relatively high social mobility education has been the major vehicle to higher social class

Korea.....

4

Where Korea was in the 60s.....

- Socio-political situation: Unstable, recovering from the Korean War
- Economic situation: Traditional agrarian society, relying on agriculture for more than 60% of GDP

⇒GDP: \$3.36 billion, per capita GDP: \$87, share of manufacturing: 15%, unemployment: 22.3% (1961)
⇒One of the poorest economies then in the world suffering from all the problems that poor countries in those days were facing......

Korean strategy.....

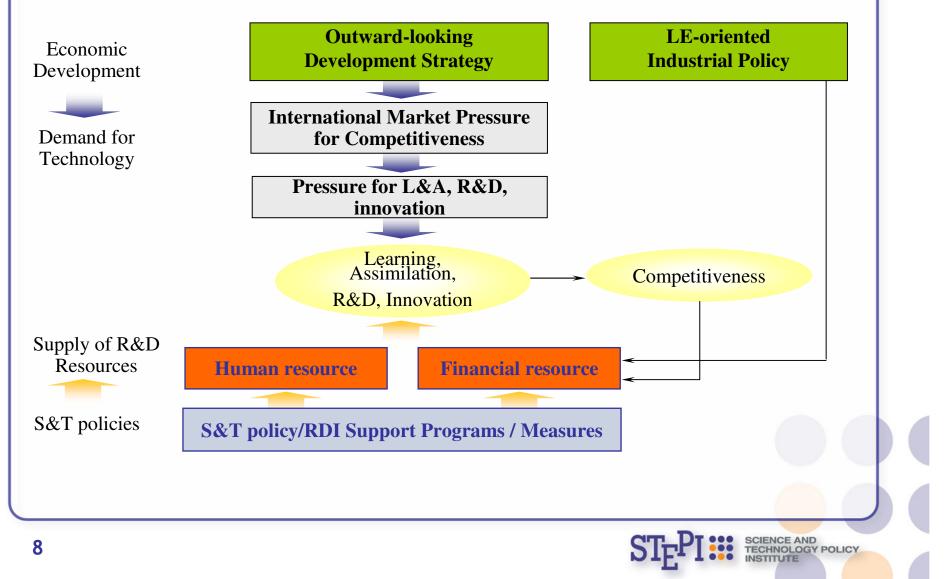
What Korea opted for.....

- Korea had no option but looking outward for resources, technology and market -- an "outwardlooking development strategy" based on human resources
- But Korea was faced with additional constraints that further limited Korea's strategic options for industrialization, such as shortage of foreign exchanges and people's desire for economic independence

⇒So, Korea could not rely so much on direct foreign investment and foreign licensing for the acquisition of capital and technology as other developing economies did and do.....

Korean strategy.....

Korea started with the following strategies


- ⇒ Capital: Long-term foreign loans
- ⇒ Technology: OEM, reverse engineering, learning by operating foreign technologies...
- Human resource: Expansion of education and training
- ⇒ Industry-targeting: Strategic industrial development
- *⇒ Market: Export expansion*
- ⇒ Large enterprise orientaiton

"Gov't brought in large-scale foreign loans and allocated them for investments in selected industries, which led to massive importation of foreign capital goods and turn-key plant. Industries later reverse-engineered the imported capital goods for the purpose of acquiring the necessary technologies."

Korean strategy for RDI

ACTIVE GOV'T SUPPORT+PRIVATE SECTOR PARTICIPATION

S&T Human Resource Development....

Education system developed in response to the socio-economic needs

⇒Focused on strengthening formal education system

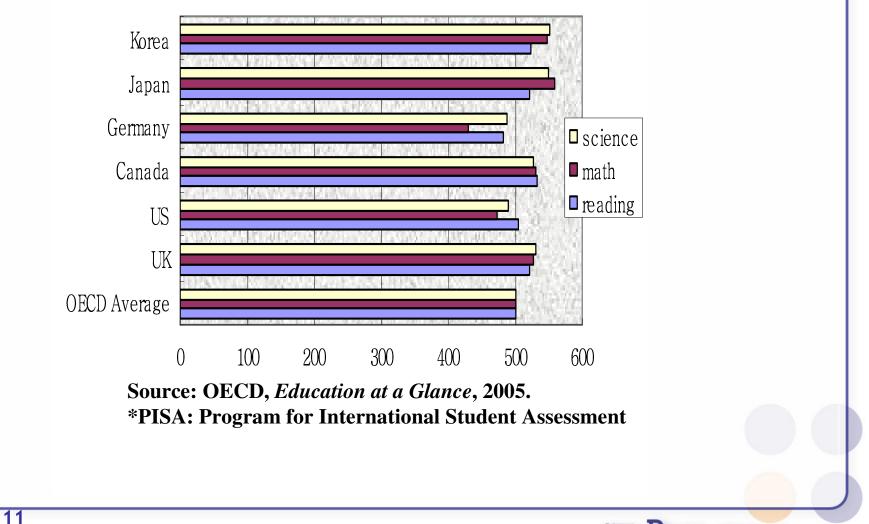
⇒Invested in primary, secondary and tertiary education in advance

- laid a foundation for industrial development

⇒Science and engineering programs have received far greater share of government's investments in education – more than 45% of college graduates in Korea are S&E majors

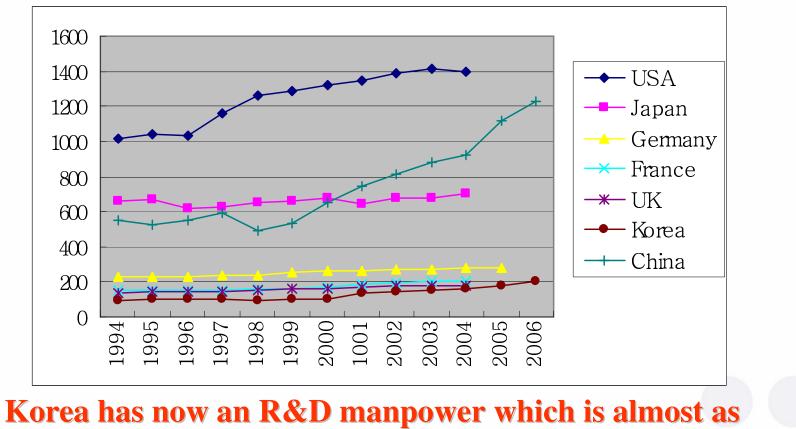
⇒Creation of KAIST: Graduate programs have been rapidly expanded to meet the fast increasing demand for high-quality engineer

Private sector's contribution – private universities account for about 75% of college enrollments



EDUCATIONAL ATTAINMENT

	1960	1970	1980	1990	2000
ILLITERACY RATE (PERCENTAGE)	29.4	12.4	7.2	4.1	2.2
UNIVERSITY ENROLLMENT RATIO OF HS GRADUATES (PERCENTAGE)	29.2	29.0	37.7	34.3	74.2
NUMBER OF UNIVERSITY GRADUATES	20,452	29,544	62,688	178,631	244,852
PERCENTAGE SHARE OF SCIENCE & ENGINEERING GRADUATES	34.6	45.7	46.4	40.9	44.5


LITERACY SCORES OF PISA 2000

SCIENCE AND TECHNOLOGY POLICY

STF

NUMBER OF RESEARCHERS

SCIENCE AND TECHNOLOGY POLICY

large as that of the UK or France

Korea has made remarkable achievements in HRD, both quantitative and qualitative

- ⇒College enrollment rate of high school graduates is the highest in the world (over 80% as of 2007)
- ⇒Also, graduate programs have been improved remarkably over the past several decades, producing increasing number of S&E with advanced degrees

⇒Linking research to education: ERC, SRC, etc..

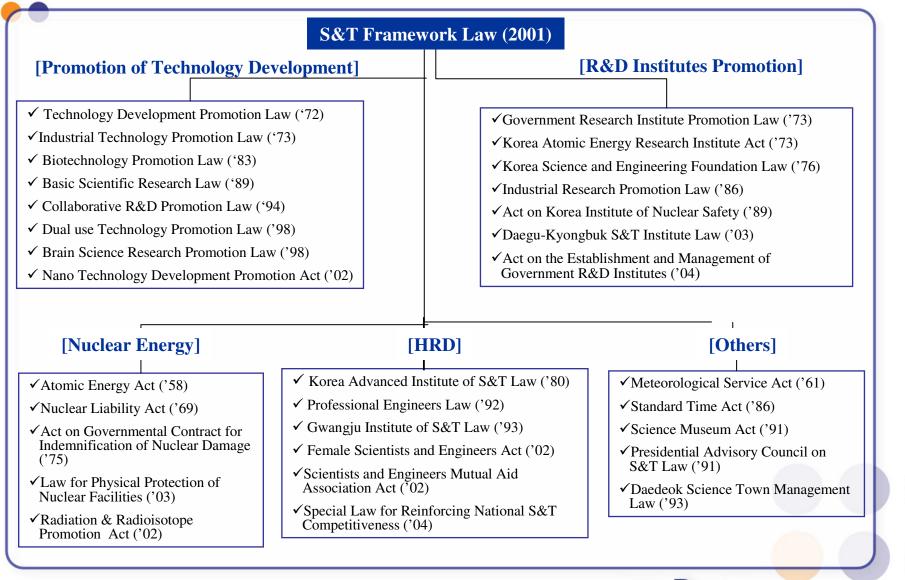
Still, the education system in Korea suffers from various problems.

R&D and Innovation....

Industrialization in Korea has been an evolution from imitation to innovation

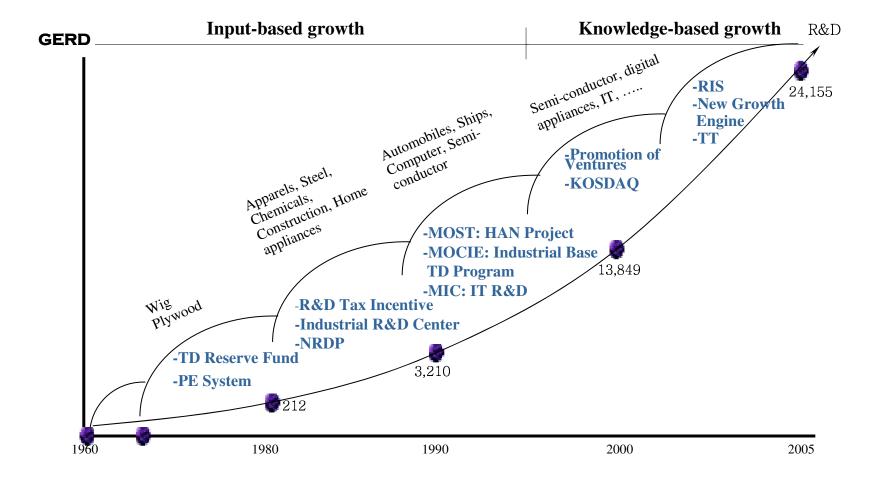
⇒In the early stages, Korea focused on assimilating foreign technologies through informal channels, such as OEM arrangements, reverse engineering of imported capital goods, learning from construction and operation of turn-key plants.....

Later, Korea turned to a strong drive for domestic R&D and innovation...


⇒It was in 1982 when the Korean government launched the National R&D Program, which has been expanded rapidly since then, and also took various measures to promote private industrial RD and innovation....

WHAT THE KOREAN GOVERNMENT HAS DONE TO PROMOTE AND FACILITATE R&D AND INNOVATION?

1960's	 Establishment of KIST (1966), MOST (1967) S&T Promotion Act (1967)
1970's	 Establishment of GRIs in the field of chemical & heavy industries in the mid- 1970s ; creation of KAIST Construction of Daeduk Science Town (Started in 1974)
1980's	 Launching of the national R&D program (1982) Promoting private firm's research: financial, tax and other incentives to stimulate R&D investments
1990's	 Promotion of university research: SRC, ERC, etc. Introduction of new types of nat'l R&D programs Highly Advanced Nat'l Program, The 21st Century Frontier R&D Program. Establishment of inter-ministerial coordination body: NSTC Opening of technology stock marketKOSDAQ
2000's	 Introduction of National Technology Road Map (NTRM) To suggest TRMs for key technologies to secure products/functions. Introduction of overall coordination system NSTC


LEGISLATIVE ACTIONS FOR S&T/HRD

SCIENCE AND TECHNOLOGY POLICY

Re

How THE GOVERNMENT HAS BEEN HELPING THE INDUSTRIES' RDI ACTIVITIES?

17

Policy Rese

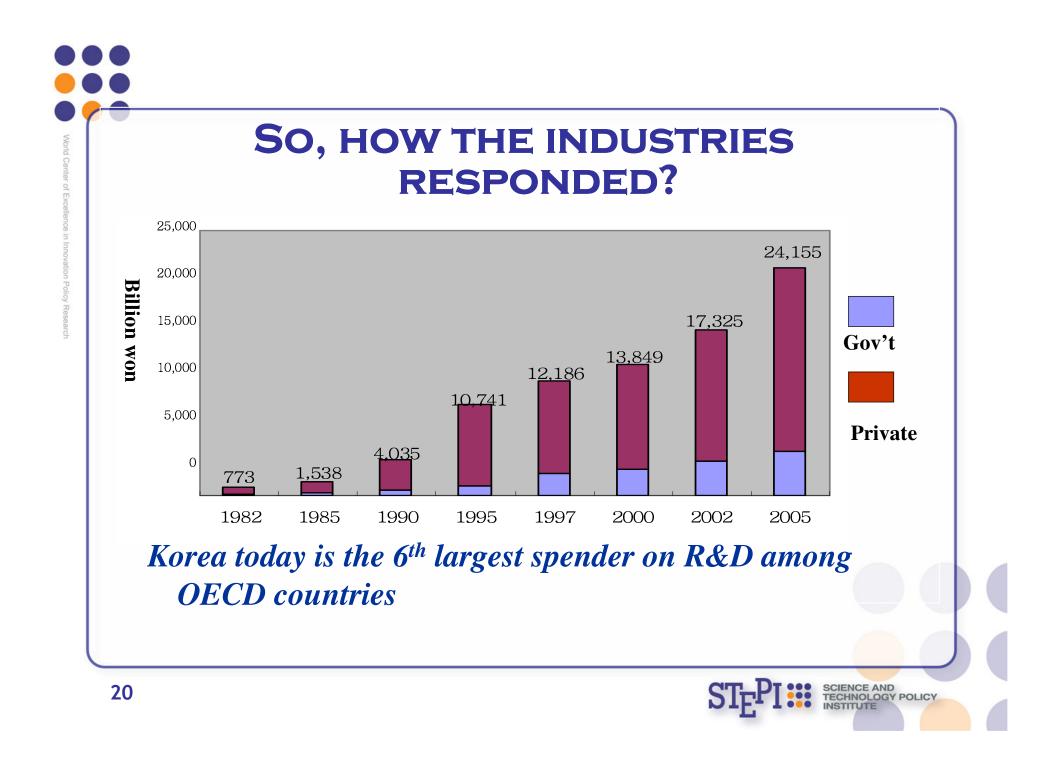
RDI SUPPORT PROGRAMS : 2005

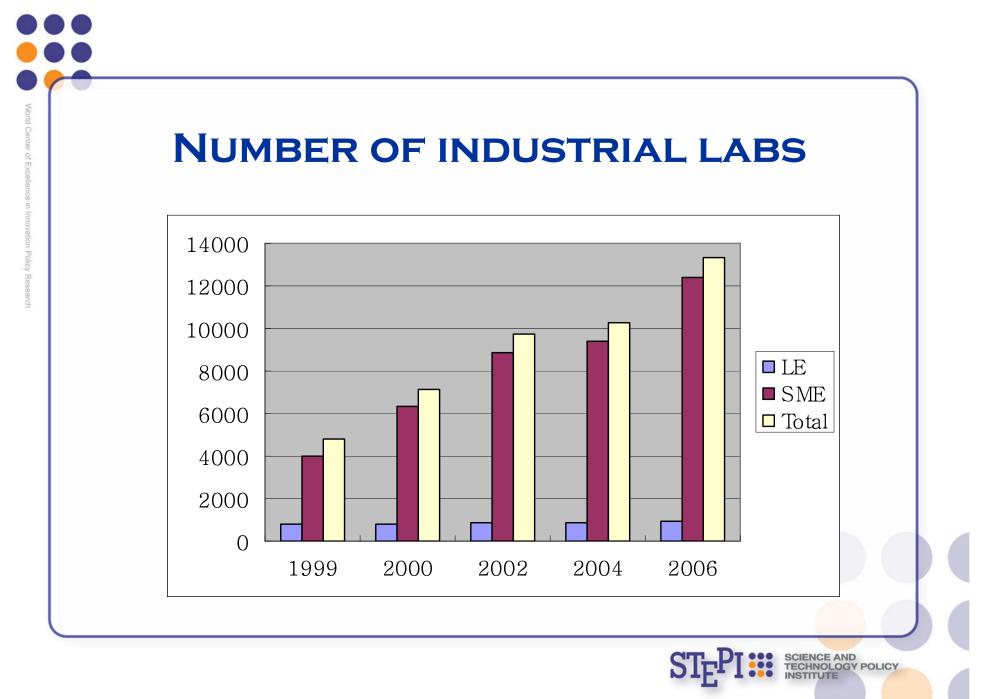
	Number o	f Program	Budgets (2005)		
	No.	%	Million \$	%	
Tax	17	6.6	1,480*	15.9	
Financial	15	5.8	3,402**	36.6	
Procurement	2	0.8	394	4.2	
Legal, etc.	29	11.2	34	0.4	
HRD	29	11.2	106	1.1	
R&D Subsidy	77	29.7	3,253	35.0	
T Trade	8	3.1	61	0.7	
T Transfer	33	12.7	225	2.4	
T Consulting	27	10.4	44	0.5	
T Information	22	8.5	294	3.2	
Total	259	100.0	9,296	100.0	

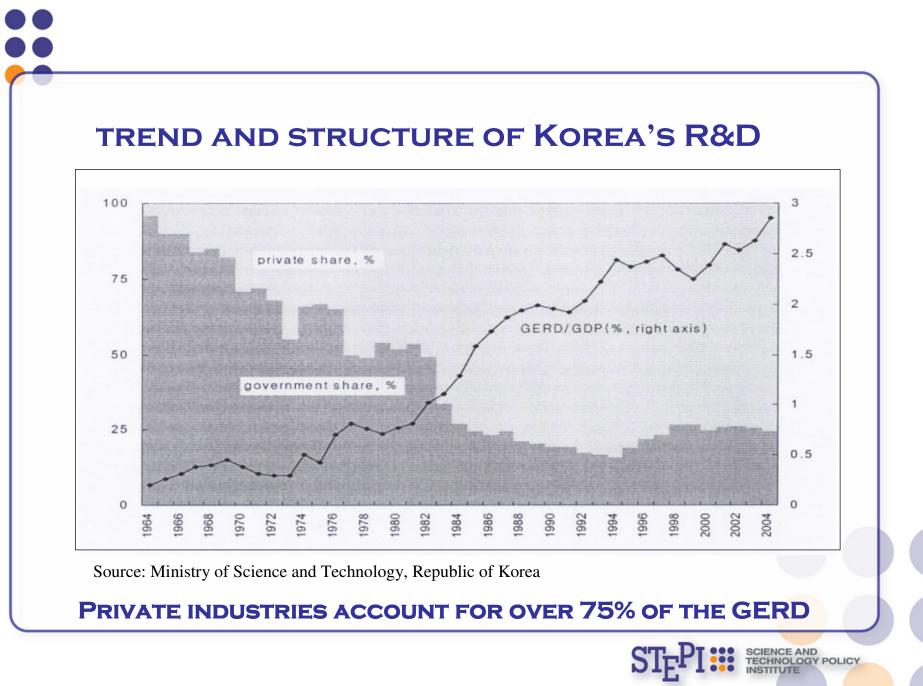
* Tax revenue foregone

** Amount of loan available

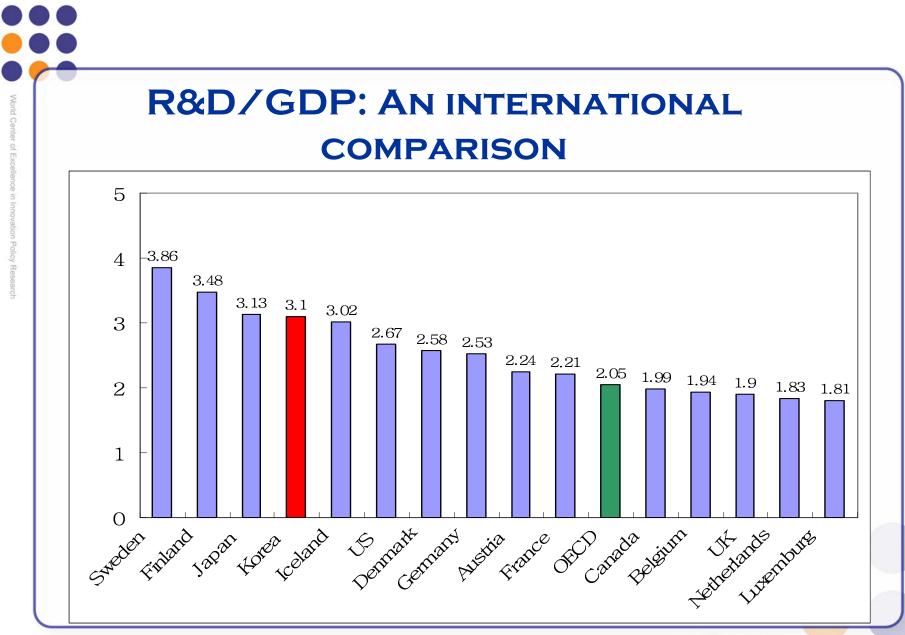
EFFECTIVENESS OF RD&I SUPPORT PROGRAMS


 $P(g=1) = F(\chi\beta)$ $P(g=0) = 1 - F(\chi\beta)$ P: Probability to innovate $\chi: Explanatory variables (RDI support programs)$ $\beta: Parameters$


No of observation : 1,710 companies (STEPI Survey)


- OVERALL EFFECTS

	β	Z-values
Tax	0.303	4.13
Loans	0.224	2.74
Procurement	0.148	1.06
Manpower	0.150	1.95
Legal, etc.	0.293	3.57
Technical	0.265	2.42


 $\hat{\beta}$ for variables other than RDI support programs not shown (size, age, etc.)

World Center of Excellence in Innovation Policy Research

SCIENCE AND TECHNOLOGY POLICY

WHAT KOREA HAS GOT FROM THE EFFORTS?

Number of KPO patents granted

	1981	1985	1990	1995	2000	2004
Number	1,808	2,687	7,620	12,512	34,579	45,298
Korean share	12.8	13.0	33.5	52.5	65.6	66.7

- Number of US patents granted to Koreans : 7th in the world – World's 4th largest producer of industrial properties
- Number SCI publications : 14th in the world (Highest growth)

WHAT KOREA HAS GOT FROM THE EFFORTS?

Established world prominence in such areas as : LCD, semi-conductors, PDP, cellular phones, automobiles, shipbuilding, steel, etc.

Emerged as the 13th largest economy and 12th largest trading country in the world from one of the poorest countries within four decades...

What made the growth possible?

Market pressure for competitiveness ⇒Outward-looking development strategy S&T human resource ⇒Investment in education in advance Financial ability to fund large, risky projects ⇒Chaebol system

Linkage of S&T to strategic industrial development

- ⇒Concentration of scarce resources on strategic areas
- ⇒More than 75% of the industrial labs are in electronics(57.6%) and machinery and metal industries(17.9%), etc
- S&T infrastructure/Govt policies
 - ⇒Creation of GRIs to compensate for technological weakness of private industries
 - ⇒Legal and administrative infrastructure for S&T ⇒RDI support programs...
- Korean government played a key role in the process by stimulating demand for technologies and at the same time helping industries develop indigenous RDI capabilities

But, there are dark sides, too.....

Imbalance in RDI system

- ⇒Basic science vs Development
 - **'over 85% of GERD for application and development'**
- ⇒Strategic industries vs other industries
 - 'More than 75% of the industrial labs are in electronics(57.6%) and machinery and metal industries(17.9%), etc'
- ⇒Large enterprises vs SMEs
 - 'Top 5 firms account for more than 40% of industrial R&D'
- ⇒Regional imbalance
 - **'More than 70% of R&D activities are concentrated in the Seoul and Daedok areas'**
- Excessive reliance on private industries for R&D
 Sery vulnerable to changes in market

Weak international linkage in research and technology

⇒Korea and Japan are among the lowest in terms of S&T globalization: patents with foreign co-inventors account for only 5% of the total domestic patents, and foreign ownership of domestic inventions is also the lowest among OECD countries

WHAT KOREAN EXPERIENCES TELL 1. HUMAN RESOURCE IS THE KEY TO R&D AND INNOVATION !!!

⇒No strategy, no model works without HR

- 2. NOTHING CAN BETTER MOTIVATE INDUSTRIAL RDI THAN MARKET COMPETITION ⇔IF THEY CAN SURVIVE W/OUT COMPETING IN THE MARKET, WHY INVEST IN RDI?
- 3. GOVERNMENT CAN PLAY AN IMPORTANT ROLE IN S&T DEVELOPMENT ⇒STIMULATE DEMAND FOR TECHNOLOGY AS WELL AS HELP BUILD UP INDIGENOUS RDI CAPABILITY
- 4. LINKING S&T TO INDUSTRIAL DEVELOPMENT IS ESSENTIAL TO MAKE RDI SYSTEM SUSTAINABLE
- 5. MOST ALL, POLITICAL LEADERSHIP FOR S&T DEVELOPMENT CAN NEVER BE MORE EMPHASIZED!!

